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Introduction
Ischemic stroke, as a common life-threatening 
cerebrovascular disease,1 causes a high percentage 
of permanent disabilities all around the world.2 The 
fibrinolytic treatment of ischemic stroke or successful 
recanalization3 restores the oxygenation but initiates 
secondary local inflammation after reperfusion3,4 which 
in turn exacerbates cerebral tissue injury, the so-called 
reperfusion injury (I/R).4,5 I/R injury initiate widespread 
inflammation, reactive oxidation, excitotoxicity and cell-
specific dysregulation of metabolic processes promoting 
neurodegeneration through specific programmed cell 
death mechanisms.6

studies have proven that the balance between two 
intracellular signaling pathways including the 
phosphatidylinositol 3-kinase/AKT (PI3K/AKT) as a cell 
survival pathway, and mitogen-activated protein kinase 
(MAPK) as an inflammatory pathway7 play important 
role in the determination of cell fate after I/R.8 Different 
mechanisms which are involved in the inhibition or 
enhancement of these pathways could be taken as suitable 
therapeutic targets to limit I/R damages.9 MAPKs family is 
consist of p38 group of protein kinases, c-jun N-terminal 
(c-JNK), and extracellular signal-regulated kinases 
(ERKs). P38 MAPK pathway, as a major stress kinase, 
activates through phosphorylation in responses to cellular 
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Abstract
Introduction: Lipid phosphatase and tensin homolog deleted from chromosome 10 (PTEN) 
antagonizes phosphoinositide 3-kinase (PI3K)/AKT cell survival pathway. The effect of PTEN 
inhibitors has been rarely examined on cell survival following reperfusion injury. In this study, 
we investigated the neuroprotective effect of SF1670, as a new PTEN inhibitor, on an in vitro 
stroke-like model. 
Methods: PC12 cells were exposed to oxygen-glucose deprivation/reperfusion (OGD/R). The cells 
were treated in five conditions as follows: normoxic normoglycemic (NO/NG); 60 minutes OGD; 
60 minutes OGD and 6 h reperfusion (OGD/R); OGD/R treated with 10 µM SF1670 (OGD/R-
SF), and NO/NG treated with 10 µM SF1670 (NO/NG-SF). Then, phosphorylation levels of AKT, 
P38 in PC12 cells were measured by immunoblotting. The cell viability was also determined by 
colorimetric assay.
Results: The results of immunoblotting revealed that following OGD/R the levels of phospho-
AKT (p-AKT) significantly decreased, compared to NO/NG cells (P < 0.05). However, the 
ratio of p-AKT/total AKT significantly increased in the presence of SF1670 in the OGD/R-SF 
group, compared to the OGD/R condition. On the other hand, SF1670 significantly reduced the 
p-P38 MAPK and p-JNK levels, compared to OGD/R cells. Moreover, cell viability significantly 
decreased in the OGD and OGD/R condition compared to NO/NG cells. Surprisingly, SF-treated 
cells (OGD/R-SF and NO/NG-SF group) showed low cell viability compared to NO/NG condition.
Conclusion: Overall, our results demonstrated that complete inhibition of phosphatase activity 
of PTEN not only did not exhibit neuroprotective effect but also promoted PC12-deprived cells 
to death.

Article info

Please cite this article as: Minaei Beyrami S, Khadem Ansari MH, Rasmi Y, Shakib N, Karimi P. Complete inhibition of 
phosphatase and tensin homolog promotes the normal and oxygen-glucose deprivation/reperfusion-injured PC12 cells 
to cell death. J Cardiovasc Thorac Res 2018;10(2):83-89. doi: 10.15171/jcvtr.2018.13.

http://dx.doi.org/10.15171/jcvtr.2018.13
http://jcvtr.tbzmed.ac.ir
http://crossmark.crossref.org/dialog/?doi=10.15171/jcvtr.2018.13&domain=pdf&date_stamp=2018-05-21


Minaei Beyrami et al

J Cardiovasc Thorac Res, 2018, 10(2), 83-8984

stress, heat shock, oxidative stress, and inflammation.10,11 
A research has revealed that activation of P38 initiates 
apoptosis cascade and up-regulates pro-inflammatory 
cytokines production.12 In addition, C-JNK activation is 
also associated with neuronal death.13-15

In contrary, phosphorylated AKT (p-AKT) in downstream 
phosphorylates numerous substrates are involved in cell 
growth,16 proliferation,17 and survival,18 as well as cellular 
metabolism, glucose uptake and angiogenesis and protects 
cells from I/R induced cell injury.19

Phosphatase and tensin homolog (PTEN) is a lipid 
phosphatase and tumor suppressor which plays an 
important role in the regulation of cell proliferation, 
differentiation, and apoptosis.20,21 Up-regulation of PTEN 
is capable to inhibit AKT activation by degradation 
of PI3P to PIP216,21 and facilitates the p38 MAPK 
signaling pathway.22,23 Decreasing PTEN activity through 
phosphorylation of PTEN24 or deleting of one copy of its 
gene increases resistance to apoptotic cell death.25 Hence, 
down-regulation of PTEN may lead to a neuroprotective 
effect in the neurodegenerative disorders with a 
beneficiary role in I/R injury.26-28

The current paper used a recently developed specific PTEN 
inhibitor, SF1670,29 for inhibiting PTEN pathway.30,31 Li et 
al showed that pretreatment with SF1670 in nanomolar 
concentration enhances PIP3 signaling in transplanted 
neutrophils.29 In the current study, for the first time, we 
examined the effects of pretreatment with high dose (10 
µM) of SF1670 for complete inhibition of phosphatase 
activity of PTEN against I/R injury in oxygen-glucose 
deprivation (OGD) as an in vitro stroke-like model in 
PC12 cultured cells. 

Materials and Methods
Chemicals and antibodies
PC12 cells were obtained from Pasteur Institute (Tehran, 
Iran), DMEM (Gibco, Grand Island, NY,USA), p-Akt1/2/3 
Antibody (Ser 473): sc-7985 (SANTA CRUZ, CA, USA), 
p-p38 Antibody (Tyr 182): sc-101759 (SANTA CRUZ, 
CA, USA), p38α Antibody (N-20): sc-728 (SANTA 
CRUZ, CA, USA), p-JNK Antibody (14.Thr 183/Tyr 185): 
sc-293136 (SANTA CRUZ, CA, USA), JNK1/3 Antibody 
(C-17): sc-474, RIPA Buffer (Sigma-Aldrich, New York, 
NY, USA), Anti-Protease Cocktail (Sigma-Aldrich, New 
York, NY, USA), Acrylamide and bisacrylamide (Sigma-
Aldrich, New York, NY, USA).

Cell culture
Rat pheochromocytoma-derived cell line PC12 cells 
were cultured in normoxic normoglycemic (NO/NG) 
condition as following: The cells were seeded in six-well 
plate in Dulbecco’s modified Eagle’s medium (DMEM) 
(Gibco, Grand Island, NY, USA) supplemented with 10% 
horse serum, 5% fetal bovine serum (FBS), 100 kU/L of 
penicillin, and 100 mg/L of streptomycin (Sigma, St. Louis, 
MS, USA) and maintained at 37◦C in a normoglycemic 

(5 mM glucose) and humidified normoxic atmosphere 
incubator (95% air and 5% CO2). All treatments were 
performed on cells at 80% confluence.

Oxygen-glucose deprivation/reperfusion model
In order to mimic ischemic-like conditions in vitro, PC12 
cells were exposed to OGD/R injury as following: the 
culture media of the cell, DMEM, was replaced by Hanks 
Balanced Salt (HBSS; glucose concentration = 0 mg/dl) and 
then transferred to a hypoxic chamber (95% nitrogen and 
CO2 5%) for 60 minutes. At the end of the OGD phase, the 
cells reperfused for 6 h in normoxic-normoglycemic (NO/
NG) condition.32,33 The pretreatment was performed by 10 
µM of SF1670 24 hours before OGD induction (OGD/R-
SF group). We also pre-treated a batch of normoxic and 
normoglycemic cells by SF1670 as drug control (NO/NG-
SF group).

Western blotting
PC12 cells were subjected to Western blot analysis for 
phosphorylation of p38, and AKT proteins as previously 
described34 with minor changes. Briefly, 106 cells were 
homogenized in 500 µl lysis buffer [0.05 mmol/L Tris-
NaOH (pH = 8), 150 mmol/L NaCl, 0.01 mmol/L 
EGTA, 1%SDS, 0.1% anti Protease Cocktails (ROCHE)]. 
The supernatants were mixed with loading buffer 
solution containing 60 mM Tris-HCl, 25% glycerol, 
2% SDS, 14.4 mmol/L 2-mercaptoethanol, and 0.1% 
bromophenol blue. Then proteins were separated on a 
10% SDS-polyacrylamide gel and transferred onto the 
nitrocellulose membrane. After incubation in blocking 
buffer (phosphate buffered saline, 3% (w/v) BSA, 0.1% 
Tween 20), the membranes were probed overnight at 
4°C with the appropriate primary antibody as follows: 
rabbit polyclonal anti-phospho-Akt, anti-AKT, anti-
phospho-p38, anti-p38, anti-phospho-JNK, anti-JNK 
antibodies. Having washed and exposed to horseradish 
peroxidase-conjugated secondary antibody for 1 hour 
at room temperature, antibody-antigen complexes were 
visualized by enhanced chemiluminescence substrates. 
The scanned images of the protein bands were analyzed 
using ImageJ (National Institutes of Health, Bethesda, 
Maryland, USA) software.

Cell viability assay
Cell viability was determined using the 3-[4, 
5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide 
(MTT). PC12 cells (2-5 × 105 cells/well) were seeded in 
96-well plates in DMEM medium until confluence 80%. 
Following the interventions, MTT reagent (20 µl, 5 mg/ml 
in PBS) was added to wells and incubated for 4 h at 37°C. 
Then the medium was removed, and replaced with 150 µl 
DMSO. Afterward, absorbance was measured at 570 nm by 
an automatic microplate reader (Awareness Technologies 
Stat Fax 4200). 
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Statistical analysis
Data was analyzed using SPSS software version 16.0 (SPSS, 
Chicago, IL, USA) and expressed in mean ±SD. One-way 
ANOVA and Tukey’s post-hoc tests were used in statistical 
comparisons. P values less than 0.05 were considered as 
significant. 

Results
The effect of SF1670 on AKT phosphorylation in OGD/R-
injured PC12 cells
Figure 1 shows that AKT phosphorylation levels (p-AKT) 
significantly (P < 0.05) decreased in the OGD-treated 
cells, compared to NO/NG cells. Moreover, reperfusion (6 
hours) following OGD significantly (P < 0.001) decreased 
p-AKT/total AKT ratio in the OGD/R cells, compared 
to NO/NG cells. Conversely, SF1670 pretreatment (24 
hours before OGD/R) significantly (P < 0.01) increased 
p-AKT/total AKT ratio, compared to the OGD/R 
condition. Surprisingly, SF1670 (P < 0.01) decreased the 
phosphorylation of AKT in normoxic normoglycemic 
cells (NO/NG-SF), compared to the NO/NG cells.

The effect of SF1670 on p38 MAPK phosphorylation in 
OGD/R-injured PC12 cells
Figure 2 shows a significant increase in the average levels of 
phospho-P38 MAPK (p-P38 MAPK) in the OGD (P < 0.01) 
and OGD/R (P < 0.001) conditions, compared to the NO/
NG condition. Nevertheless, SF1670 administration in 
OGD/R-SF group significantly (P < 0.01) decreased the 
P38 MAPK phosphorylation, compared to OGD/R cells. 
No significant change was observed in the levels of p-P38 
MAPK in the NO/NG-SF condition, compared to the NO/
NG condition.

The effect of SF1670 on c-JNK phosphorylation after 
being exposed to OGD /R
Our results also demonstrated that OGD/R condition 
significantly (Figure 3, P < 0.05) increased phospho-
JNK (p-JNK) levels, compared to the NO/NG. However, 
SF1670 pretreatment in the OGD/R-SF group decreased 
the p-JNK when compared to OGD/R cells (P < 0.05). No 
significant change was observed in the levels of p-JNK 
between NO/NG-SF and NO/NG condition.

The effect of SF1670 on cell viability
In addition, MTT assay was carried out to evaluate 
cellular viability in the PC12 cells. The results showed 
that cell viability was reduced after exposure to OGD 
for 1 hour (P < 0.05), and OGD-R for 6 hours (P < 0.01), 
compared to NO/NG condition (Figure 4). The SF1670 
at the concentration of 10 µmol/L decreased (P < 0.05) 
cell viability in OGD/R-SF, compared to the OGD/R. 
Furthermore, SF1670 decreased the cell viability in NO/
NG-SF, compared to NO/NG (P < 0.001).

Discussion
The current paper deprived PC12 cells of oxygen and 
glucose for 1h followed by 6 hours reperfusion to induce 
a valid in vitro stroke-like model. The current study 
aimed at investigating the neuroprotective effect of PTEN 
inhibitor, SF1670, on OGD/R-induced injury by assessing 
the phosphorylation of AKT, JNK, and P38 MAPK 
proteins, and cell viability. The results of the current study 
showed that SF1670 increased p-AKT, and decreased 
p-P38, p-JNK, and cell viability in the PC12 cells exposed 
to OGD/R insult. 
The oxygen and glucose deprivation are two common 

Figure 1. The effect of SF1670 on AKT phosphorylation in PC12 
cell exposed to OGD/R. A) Immunoblotting images of p-AKT 
and total AKT proteins in PC12 cells exposed to one hour OGD 
followed by 6 h of reperfusion and/or 10µM SF1670 pretreatment. 
B) Quantitative densitometric analysis of the p-AKT against 
total AKT protein bands. Data are presented as means ± SEM. 
*P <0.05, **P < 0.01, ***P < 0.001 vs. NO/NG. ##P < 0.01 vs. 
OGD/R. [NO/NG: normoxic/normoglycemic cells; OGD: Oxygen 
and glucose deprived cells (60 min); R: Reperfused cells for 6 
hours; SF: SF1670 (10 µM) treated cells with SF1670 one hour 
before OGD].

Figure 2. The effect of SF1670 on phosphorylation of P38 MAPK 
in PC12 cell exposed to OGD/R. A) Immunoblotting images of 
p-P38 MAPK and total P38 MAPK proteins in PC12 cells exposed 
to one hour OGD followed by 6 h of reperfusion and/or 10µM 
SF1670 pretreatment. B) Quantitative densitometric analysis of 
the p- P38 MAPK against total P38 MAPK protein bands. Data 
are presented as means ± SEM. **P<0.01, ***P<0.001 vs. NO/
NG. ##P<0.01 vs. OGD/R. [NO/NG: normoxic/normoglycemic 
cells; OGD: Oxygen and glucose deprived cells (60 min); R: 
Reperfused cells for 6 hours; SF: SF1670 (10 µM) treated cells 
with SF1670 one hour before OGD].
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reasons for ischemic insult damages which are deteriorated 
after reoxygenation.1,8,10 PTEN is an upstream negative 
regulator of AKT signaling pathway which inhibits 
AKT phosphorylation by PI3K, the positive regulator of 
AKT. Therefore, PTEN activity is associated with down-
regulation of PI3K/Akt down-streams involved in cell 
survival pathways.35,36 Conversion of Inositol diphosphate 
(IP2) to Inositol 3, 4, 5-triphosphate (IP3) is required to 
Akt phosphorylation which promotes cellular survival 
and attenuates cell death. The current paper showed that 
exposure to OGD and reperfusion reduced p-AKT levels 
in the PC12 cells. As shown in Figures 1 and 4, the parallel 
changes were detected for p-AKT expression and cell 
viability during the experiment. Similarly, in the previous 
report the OGD/R-induced cell viability loss in PC12 cells 
was associated with diminished Akt phosphorylation.37 In 
support of our finding, previous studies also showed that 
ischemia and reperfusion inhibited PI3K/Akt pathway 
resulting in cell death.38,39 
P38 and JNK, stress-activated kinases, play important 
role in the regulation of apoptosis signals. Previous 
studies demonstrated that JNK and P38 activities were 
up-regulated in response to the brain ischemia. In 
addition, these proteins are involved in cerebral ischemia/
reperfusion insult, and inhibition of their phosphorylation 
attenuates ischemic brain injury.40-42 Recently, a study also 
reported that OGD/R increases p-P38 and p-JNK in PC12 
cells.42 Similarly, in the present experiment, the levels of 
p-JNK and p-P38 expression were significantly amplified 
following OGD/R. Nevertheless, SF1670 pretreatment 
prevented these changes induced by OGD/R. Moreover, 
our study showed that increased p-P38 MAPK and p-JNK 
levels were accompanied with cell viability loss in OGD/R. 
In addition, it has been shown that AKT signaling via 
phosphorylation of apoptosis signal-regulated kinase 1 

(ASK1), inhibits the JNK and p38-mediated apoptosis.43,44 
In this study, SF1670 treatment attenuated p-AKT, p-p38, 
and p-JNK accompanied by cell viability loss. Although 
previous evidence indicated that activation of p38 and 
JNK is associated with apoptotic cell death, some reports 
revealed that p38 MAPK plays a critical role in the control 
of cell survival and proliferation.45-47 Phong et al have 
demonstrated that p38 signaling promotes cell survival in 
response to DNA damage possibly to inhibit the onset of 
premature apoptosis.48 Moreover, previous reports linked 
p38 signaling pathway to increased levels of antiapoptotic 
protein such as Bcl-2 and Bcl-xl following DNA damage 
and stress.49, 50 It seems that the role of p38 signaling in the 
control of apoptosis is context dependent and depending 
on the physiological context of the stress induction it 
may switch from cell survival to pro-apoptosis. In the 
present study, SF1670 attenuated p-p38 and p-JNK in 
PC12 cells accompanied by low cell viability. We suggest 
that ameliorated JNK and P38 MAPK signaling pathways 
promote cells toward cell death. 
Furthermore, we found that pretreatment of NO/NG 
cells with SF1670 attenuated p-AKT expression and cell 
viability as assessed by MTT. We suggest that SF1670 in 10 
µM concentration has a neurotoxic effect on PC12 cells. In 
addition, it is likely that other apoptosis-prompting factors 
override the cytoprotective effects of SF1670 activity. This 
paradoxical effect of 10 µM of SF1670 may be related to the 
dual roles of PTEN in the cell. Lately, Zhou et al. reported 
that inhibition of PTEN with bpV(HOpic) aggravates 
ischemic acute kidney injury via augmenting apoptosis 
and inflammation.51 It has also reported that astrocytic 
PTEN loss exacerbated ischemia damage.52 Evidence 
has also shown that PTEN-knockout mice died in early 
development.16 Therefore, it is likely that the complete 
suppression of phosphatase activity of PTEN could not 
be a good idea in cell protection, particularly in this 
model which was made by neuroblastoma cells. Probably 
PTEN has other crucial roles in cell viability that have not 
been clarified yet which needs further studies. Similar to 

Figure 3. The effect of SF1670 on phosphorylation of JNK in 
PC12 cell exposed to OGD/R. A) Immunoblotting images of 
p-JNK and total JNK (as loading control) proteins in PC12 cells 
exposed to one hour OGD followed by 6 h of reperfusion and/
or 10µM SF1670 pretreatment. B) Quantitative densitometric 
analysis of the p-JNK against total JNK protein bands. Data are 
presented as means ± SEM. *P <0.05, vs. NO/NG; #P<0.05 vs. 
OGD/R. [NO/NG: normoxic/normoglycemic cells; OGD: Oxygen 
and glucose deprived cells (60 min); R: Reperfused cells for 6 
hours; SF: SF1670 (10 µM) treated cells with SF1670 one hour 
before OGD].

Figure 4 The effect of SF1670 on cell viability (MTT) in cultured 
PC12 cells exposed to OGD/R insult or OGDR-SF1670. Data are 
presented as means ± SEM. *P<0.05, **P<0.01, ***P<0.001. vs. 
NO/NG; #P<0.05 vs. OGD/R. [NO/NG: normoxic/normoglycemic 
cells; OGD: Oxygen and glucose deprived cells (60 min); R: 
Reperfused cells for 6 hours; SF: SF1670 (10 µM) treated cells 
with SF1670 one hour before OGD].
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other novel protein, the specific substrates of PTEN are 
a mystery. To identify of this phosphatase, systematic 
approaches including generation of null mutations, 
exploration of possible roles in transient overexpression 
studies, further studies are needed to be given mutants 
with normal PTEN activities.
In summary, the study demonstrated that complete 
inhibition of phosphatase activity of PTEN promoted cells 
toward death, possibly through attenuation p38 signaling 
pathways in OGD/R PC12 cells.
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