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Introduction
The effects of changes in dietary fat quality on lipid and 
glycemic metabolism have been extensively studied. A 
large body of evidence has suggested that a reduction 
of saturated fatty acids (SFAs) and its substitution with 
unsaturated fatty acids (UFAs) might help to improve 
insulin sensitivity and circulating lipid levels, as well 
as cardiovascular risk.1-4 Some of plant-based oils that 
contain considerable amounts of mono- (MUFAs) 
and polyunsaturated fatty acids (PUFAs) are being 

investigated as suitable alternatives for dietary oils rich 
in saturated and trans-fatty acids.5 Healthy vegetable 
oils such as canola and sesame oils with high contents 
of MUFAs (e.g. oleic acid), PUFAs (e.g. alpha-linolenic 
acid and linoleic acid), and antioxidants (e.g. tocopherol, 
lignans, and phytosterols) have been reported to be 
beneficial in improving cardiovascular risk factors, 
although some other studies were controversial.6-10 
These inconsistent observations have been proposed 
to be related to the combined effects of genetic and 
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Abstract
Introduction: Cholesteryl ester transfer protein (CETP) is a key regulating enzyme in the lipid 
metabolism pathway, and its gene polymorphism may be a candidate for modulating the metabolic 
responses to dietary intervention. We thus examined whether the effects of the CETP TaqIB 
polymorphism on metabolic profiles were modified by dietary plant oils. 
Methods: This is a retrospective analysis of data collected during a randomized triple-blind crossover 
trial. A total of 95 patients with type 2 diabetes and 73 non-diabetes individuals completed a 9-week 
of the intake of sesame, canola and sesame-canola oils. Blood samples were collected at the beginning 
and at the end of each intervention period for biochemical analysis. Genotyping was done using the 
polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. 
Results: In diabetes patients, B1B1 homozygotes of the CETP TaqIB polymorphism compared with 
B2 carriers (B1B2 + B2B2) had significantly lower diastolic blood pressure, apoB and apoB: apoA-1, 
and higher Lp(a) after the intake of sesame-canola oil, as well as lower insulin and HOMA-IR after 
the intake of sesame oil. There was also a significant effect of genotype on adjusted changes of apoB, 
apoB: apoA-1, insulin, HOMA-IR and QUICKI. A significant genotype-dietary oils combined effects 
were observed for diastolic blood pressure, and LDL: HDL, TC: HDL and TG: HDL ratios in diabetes 
patients. No independent or combined effects of dietary oils and genotypes on outcomes were found 
in healthy people.
Conclusion: There was a modulatory effect of the CETP TaqIB polymorphism on some metabolic traits 
in response to plant oils in patients with diabetes. Taken together, the intake of sesame-canola and 
canola oils showed more favorable effects in diabetes patients with B1B1 genotype. Future investigations 
are needed to confirm these results.
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environmental factors (e.g. dietary intake) that justified 
different individual responses to dietary interventions in 
general.11 Genetic variations including single-nucleotide 
polymorphisms (SNPs) in the genes that encode proteins 
involved in lipid and glycemic metabolism, may play a 
major role in changes in metabolic profile.12

The human cholesteryl ester transfer protein (CETP) 
gene is localized on chromosome 16 in the region of q21 
(16q21) and contained 16 exons and 15 introns.13 This 
gene encodes a protein containing 476 amino acids as 
one of the key enzymes in lipid metabolism that plays an 
important role in reverse-cholesterol transport resulting 
in decreasing high-density lipoprotein (HDL) cholesterol 
and increasing the cholesterol content of low-density 
lipoprotein (LDL) and very low-density lipoprotein 
(VLDL) cholesterol. Indeed, it transfers cholesterol ester 
from HDL to apo B-containing lipoproteins such as LDL, 
VLDL and VLDL remnants in exchange for triglyceride and 
subsequent uptake of cholesterol by hepatocytes.14 TaqIB 
is a common polymorphism in the CETP gene, which is 
located in nucleotide 277 of intron 1 and characterized by 
a silent base change from G [called as B1 allele (presence 
of the TaqI endonuclease restriction site) (frequent allele)] 
to A [called as B2 allele (absence of the TaqI endonuclease 
restriction site) (less common allele)].15 

Meta-analyses have associated the TaqIB polymorphism 
with HDL-C and coronary diseases, such that individuals 
carrying the B2 allele are reported to have higher HDL-C 
levels and lower risk of coronary diseases than B1B1 
homozygotes.16,17 The presence of the B2 allele has also been 
associated with moderate inhibition of CETP activity.17 
Furthermore, another research provided evidence 
regarding the effect of this polymorphism on parameters of 
insulin resistance.18 In previous studies that evaluated the 
combined effects of the TaqIB polymorphism and dietary 
intakes, a lack of consistency was observed. A number 
of researchers suggested a potential interaction between 
this polymorphism and type and amount of dietary fat 
on serum lipid and lipoprotein levels.19-23 However, the 
findings of other studies did not support that the TaqIB 
polymorphism can affect metabolic responses to dietary 
intakes.24-27

Although there are several studies regarding the 
combined effects of CETP polymorphisms and different 
dietary interventions, we found no study that assessed 
the potential combined effects of CETP genotypes and 
plant oils on the determination of cardiometabolic profile. 
Therefore, we decided to discover whether the effects of 
sesame, canola, and sesame-canola oils on blood lipids and 
glycemic control markers are conditioned by the CETP 
TaqIB polymorphism in patients with type 2 diabetes and 
healthy people. 

Materials and Methods
Participants 
This study was conducted within a trial that was registered 

in the Iranian Registry of Clinical Trials (identifier: 
IRCT2016091312571N6) and ethically approved by 
the ethics committee of Shahid Sadoughi University of 
Medical Sciences, Yazd, Iran (IR.SSU.SPH.REC.1397.139). 
All participants provided written informed consent. A 
detailed description of the methodology of the trial has 
been published, elsewhere.28 In brief, patients with type 2 
diabetes and their spouses were recruited from the general 
population referred to the Yazd Diabetes Research Center 
of Shahid Sadoughi University of Medical Sciences. 
Patients with type 2 diabetes had following criteria; (1) 
history of diabetes for at least 6 months or maximum 10 
years (fasting blood glucose more than 126 mg/dL and/or 
HbA1c more than 6.5% and less than 8%),29 (2) being on 
oral anti-glycemic medications without insulin therapy, 
(3) no change in dosage of lipid-lowering drugs at least 
for 3 months before beginning the study. Those healthy 
spouses who were without diabetes (fasting blood glucose 
less than 126 mg/dL and/or HbA1c less than 6.5%), were 
also included. All of the participants aged more than 
18 years old and had no history of any diseases such as 
cardiovascular disorders (coronary artery disease, stroke, 
congestive heart disease) and coronary artery bypass 
grafting, renal diseases, liver disorders (serum glutamic 
oxaloacetic transaminase and serum glutamic pyruvic 
transaminase three times more than normal values), and 
cancers. Subjects were excluded from the study if they 
changed dietary food habits considerably, went on insulin 
therapy, get pregnant, get chronic diseases, and decided to 
discontinue the study due to any reason.28

Sampling size 
This is a retrospective analysis of data collected during the 
parent study. A sample size of n = 34 in total was calculated 
based on a formula suggested for cross-over studies as 
follows30: n = [(z 1−α/2+z 1−β)2 * s2]/2Δ2; assuming the 
type one error of 5% and the type 2 error of 10% (power 
of 90%) and serum glucose as the key variable.31 Since the 
investigators aimed to perform sex specific analyses in the 
parent study, and also with considering the probability 
of high rate of attrition, 50 men and 50 women with type 
2 diabetes and their healthy spouses who had eligibility 
criteria were recruited in the parent study.

Procedure 
The study involved a randomized triple-blind crossover 
trial of three interventions: 1) sesame oil, 2) canola 
oil, and 3) sesame-canola oil (40% sesame oil and 60% 
canola oil). Participants at first followed a run-in period 
of 4 weeks during which regular oils used in households 
were substituted with sunflower oil. Thereafter, they 
went through three 9-week intervention periods which 
separated by 4-week washout periods. The participants 
were asked to consume sunflower oil for 4 weeks in washout 
periods. The oil packs were similar in shape and labeled 
with three codes (S, B, and G) by a person who was not 
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informed about the study protocol. All of the intervention 
oils were provided by Neshatavar food industry (Datis 
Corporation) free of charge for all family members of the 
participants and were fully replaced with any edible oils 
that the subjects regularly used at their homes. Indeed, the 
participants were not allowed to consume any other edible 
oil during the study period. The amount of consumed 
oils that estimated by using dietary records and weighing 
the given and returned oil bottles, was approximately 31 
g per individual. Gas chromatography with flame ionized 
detector (GC-FID) was also used to detect the fatty acid 
composition of the intervention oils. The fatty acids 
profile has been provided, previously.28

Measurements 
All assessments in all phases of the research were 
completed by trained researchers blinded to the treatment 
protocol.

Dietary intake and physical activity
At the beginning, middle, and end of each treatment 
period, a 3-day weighed food record and a 3-day physical 
activity record (2 weekdays and 1 weekend day) were 
obtained from the participants. All participants were 
requested to follow their usual physical activity and 
dietary habits during the study. 

Anthropometric and blood pressure measurements 
The participants attended the clinic at the beginning, 
middle, and end of each treatment period for measuring 
anthropometric parameters and blood pressure. Weight 
was recorded with an accuracy of 100 g, using a digital 
calibrated scale (Omron, Japan, model: BF51) with 
light clothes and no shoes. Height was recorded with an 
accuracy of 0.1 cm, using a wall-fixed measuring tape, in 
standing position with shoulders in normal alignment 
and no shoes. Body mass index (BMI) was calculated as 
body weight (kg) divided by height squared (m2). Systolic/
diastolic blood pressure (SBP/DBP) was measured after 
a 5-minute rest in a sitting position, using a barometer 
(Riester, model: Diplomat-presameter). Three measures 
were taken and averaged for all variables. 

Laboratory
At the beginning and at the end of each intervention 
period, the venous blood samples were drawn after a 10-
12 h overnight fast and stored at -80ºC until analyzed. 
The biochemical analyses of blood lipids, lipoproteins, 
apolipoproteins, fasting blood glucose (FBG) and liver 
enzymes were conducted by an auto-analyzer (Alpha-
classic, model: AT++) using Pars Azmun kits (Pars 
Azmun Co., Iran). Fasting serum insulin concentrations 
were measured using enzyme-linked immunoassay 
(ELISA) kits (Monobind, Inc., Lake Forest, CA, USA). 
The quantitative insulin sensitivity check index (QIUCKI) 
and hemostatic model assessment of insulin resistance 

(HOMA-IR) were calculated with the use of suggested 
formulas.32, 33

DNA extraction and genotyping
Genomic DNA was extracted from 250 µL of whole blood 
using the DNJia Blood Kit (Roje Technologies Inc, Iran) 
based on silica technology. The TaqIB SNP (rs708272) 
was determined by amplifying a fragment of 520 base 
pairs (bp) in intron 1 of the CETP gene by polymerase 
chain reaction-restriction fragment length polymorphism 
(PCR-RFLP) method. The PCR mixture was provided 
in a total volume of 20 µL containing 1 µL of genomic 
DNA, 10 µL of Master Mix (Ampliqon, Denmark), 8 µL of 
water and 0.5 µL (5 pmol) of each oligonucleotide primer 
(forward: 5’-ACTAGCCCAGAGAGAGGAGTG-3’ and 
reverse: 5’-CAGCCGCACACTAACCCTA-3’). DNA 
was denatured at 95°C for 5 minutes; this was followed 
by 40 cycles of amplification at 95°C for 30 seconds, 
annealing at 66°C for 30 seconds, extension at 72°C for 
30 seconds, and ended with a final extension at 72°C for 
5 minutes. The PCR products were digested with 5 units 
of the restriction endonuclease enzyme TaqI (Fermentase, 
Lithuania) in a total volume of 20 µL after incubation 
at 37°C overnight. The digested DNA fragments (8 µL) 
were loaded on 2% agarose gel (SinaClon, Iran) and 
subjected to electrophoresis for 1.5 hours at 100 V, and 
were finally visualized by an ultraviolet transilluminator. 
The B1 allele has two bands of 361 and 174 bp, and the 
B2 allele is characterized by one fragment of 520 bp in 
length. The PCR-RFLP electrophoresis of the TaqIB CETP 
polymorphism on 2% agarose gel is provided in Figure 
1. The accuracy of the genotyping was confirmed using 
direct gene sequencing of randomly selected samples.

Statistical analysis
All data presented in the text and tables are expressed 
as mean ± standard error (SE). Statistical analyses were 
performed with the SPSS package, version 24.0 (IBM 
Corporation, USA). Statistical significance was defined as 
P values < 0.05. All analyses were separately performed in 

Figure 1. The PCR-RFLP electrophoresis of the TaqIB CETP polymorphism 
on 2% agarose gel. 50 bp ladder marker (Lane 1); 361 bp and 174 bp 
showing homozygous B1B1 genotype (lane 2 and 6); 520 bp, 361 bp, and 
174 bp showing heterozygous B1B2 genotype (lane 5, 7, and 8); 520 bp 
showing homozygous B2B2 genotype (lane 3 and 4)
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diabetes and healthy people. Normal distribution for all 
continuous variables was assessed by graphical methods 
and hypotheses tests. One-way analysis of variance 
(ANOVA) was used to multiple comparisons of baseline 
means between three genotypes (B1B1, B1B2, and B2B2). 
A mixed linear model followed by Bonferroni post hoc 
comparisons was used to determine the changes of mean 
values (with SEs) from baseline to end of treatment 
periods, disaggregated by genotype. Within-period 
comparisons were also performed using a mixed linear 
model. Models were adjusted for age, gender, baseline 
BMI, amount of consumed oils, change levels of physical 
activity, and change in energy intake. The gene-diet 
interaction was tested to determine whether the observed 
effects in each intervention period are dependent on the 
CETP TaqIB genotype.

Results
In total, 95 patients with type 2 diabetes (49 females; 
46 males) and 73 healthy people (41 females; 32 males) 
completed the study protocol. The flow diagram of the 
attendance of study participants is provided in Figure 2. 
Genotype frequency of the CETP TaqIB polymorphism 
was as follows: 18.9% for B1B1, 61.1% for B1B2 and 
20% for B2B2 in patients with diabetes; 13.7% for B1B1, 
64.4% for B1B2 and 21.9% for B2B2 in healthy people. 
The baseline characteristics of the participants according 
to the CETP TaqIB genotypes are shown in Table S1. All 
variables did not differ statistically between genotypes in 
both type 2 diabetes and healthy people. 

Total energy and energy percent of protein, carbohydrate, 
and fat intake as well as physical activity had no significant 
differences between the intervention periods in subjects 

with and without diabetes. The mean intake of MUFAs 
and PUFAs in diabetes patients and also SFAs in healthy 
people considerably differ between the intervention 
periods (Table S2).

The effect of dietary oils on anthropometric measures and 
blood pressure according to the CETP TaqIB genotypes
As shown in Tables 1 and 2, in both patients with type 
2 diabetes and healthy people, there was no significant 
change in outcomes based on the CETP TaqIB genotypes 
for all three treatment periods (P > 0.05). No independent 
or combined effects of dietary oils and genotypes were 
also found. However, in patients with type 2 diabetes, 
a significant difference for adjusted DBP changes was 
observed between B1B2 and B2B2 genotypes during the 
sesame-canola oil period (-0.23 ± 0.15 mm Hg vs. 0.79 ± 
0.27 mm Hg). In addition, a significant combined effect of 
dietary oils and genotypes was observed (P = 0.039, Table 
1). Specifically, B1B2 genotype group showed a decreased 
change in DBP following the intake of sesame-canola oil, 
but an increase in DBP was observed in sesame and canola 
oil periods.

The effect of dietary oils on blood lipids and 
apolipoproteins according to the CETP TaqIB genotypes
In patients with type 2 diabetes, B1B1 homozygotes 
compared with B2 carriers (B1B2 + B2B2) had a 
significant decrease in apoB levels (-19.05 ± 6.12 mg/dL) 
and apoB: apoA-1 ratio (-0.12 ± 0.04) and an increase in 
Lp(a) levels (6.37 ± 2.17 mg/dL) following the intake of 
sesame-canola oil (Table 1). There was also a significant 
effect of genotype on change values of apoB (P = 0.041) 
and apoB: apoA-1 ratio (P = 0.018) without considering 

Figure 2. The flow diagram of the attendance of study participants. CVD, cardiovascular disease; CO, canola oil; SO, sesame oil; SCO, sesame-canola oil
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the type of consumed dietary oils (Table 1). Bonferroni 
adjustment for multiple comparisons showed that the 
levels of apoB and apoB: apoA-1 ratio have been reduced 
in B1B1 homozygotes compared with B2 carriers. There 
was also a significant combined effect of the TaqIB 
polymorphism and dietary oils on LDL: HDL (P = 0.027), 
TC: HDL (P = 0.024), and TG: HDL (P = 0.025) (Table 1). 
These ratios in B1B1 homozygotes tended to decrease 
following the intake of sesame oil and sesame-canola oil, 
but tended to increase following the intake of canola oil. 
No independent or combined effects of dietary oils and 
genotypes were observed for other outcomes. 

In healthy people, there were no significant differences 
between genotypes regarding the change in outcomes, 
except a considerable difference for adjusted TC changes 
between the two genotype groups during the sesame 
oil treatment period (B1B2: -2.75 ± 3.52 mg/dL; B2B2: 
17.06 ± 5.82 mg/dL, P < 0.05, Table 2). No independent 
or combined effects of dietary oils and genotypes were 
observed for all outcomes (Table 2).

The effect of dietary oils on glycemic indices according to 
the CETP TaqIB genotypes
As shown in Table 1, patients with type 2 diabetes carrying 
B1B1 genotype had a significantly lower insulin (B1B1: 
-15.07 ± 3.77 mIU/mL vs. B1B2: -4.75 ± 2.20 mIU/mL and 
B2B2: 0.76 ± 3.77 mIU/mL) and HOMA-IR (B1B1: -1.74 ± 
0.45 vs. B2B2: 0.10 ± 0.45) than carriers of the B2 allele in 
the sesame oil period. No significant differences between 
genotype groups were observed for other glycemic control 
markers across all treatment periods. On the other hand, 
there was a significant effect of genotype on adjusted 
changes of insulin (P = 0.031), HOMA-IR (P = 0.024) 
and QUICKI (P = 0.046) without considering the type of 
consumed dietary oils (Table 1). According to Bonferroni 
adjustment for multiple comparisons, those with B1B1 
genotype compared with B2B2 homozygotes showed 
a significant reduction in insulin and HOMA-IR and 
an increase in QUICKI. Glycemic indices did not differ 
statistically between the CETP TaqIB genotypes during 
all treatment periods in healthy people (P > 0.05, Table 
2). Also, neither the intervention nor the polymorphism 
had a significant effect on outcomes changes. We found no 
combined effect of the TaqIB polymorphism and dietary 
oils on glycemic control measures in both type 2 diabetic 
and healthy people (Table 1 and 2).

The effect of dietary oils on liver enzymes according to 
the CETP TaqIB genotypes
No significant differences between genotype groups 
were found for liver enzymes in both type 2 diabetes and 
healthy people (Table 1 and 2), however, during the canola 
oil period, the levels of AST and ALT were significantly 
decreased in B1B1 subjects as compared with carriers of the 
B2 allele only in healthy people (Table 2). There was also 
a significant combined effect of the TaqIB polymorphism 

and dietary oils on AST concentrations in healthy people 
(P = 0.019, Table 2). No independent or combined effects 
of dietary oils and genotypes were observed for other liver 
enzymes in both type 2 diabetes and healthy people (Table 
1 and 2).

Discussion
Gene-diet interaction is an important emerging field of 
research that is expected to provide more knowledge about 
the association between genetic traits and dietary factors 
in relation to different aspects of health. The number of 
studies assessing the effects of genetic variations on the 
metabolic response to dietary interventions is rapidly 
increasing. To the best of our knowledge, our study is the 
first clinical trial to investigate the combined effects of the 
CETP TaqIB polymorphism and dietary plant oils on the 
metabolic response after consuming canola, sesame, and 
sesame-canola oils in diabetes patients and healthy people. 
In patients with type 2 diabetes, we found generally a 
significant genotype effect; such that individuals with 
B1B1 genotype showed a significant decrease in apoB, 
apoB: apoA-1, insulin, and HOMA-IR and also an increase 
in QUICKI compared with B2B2 homozygotes. We also 
observed a differential effect for this polymorphism 
depending on the type of dietary plant oil; serum levels 
of apoB and apoB: apoA-1 ratio favorably decreased in 
diabetes patients who were B1B1 homozygotes rather 
than B2 carriers  after sesame-canola oil intake, whereas 
the levels of Lp(a) was adversely increased. Moreover, a 
considerable genotype-dietary oils combined effects were 
detected in diabetes patients as LDL: HDL, TC: HDL and 
TG: HDL ratios tended to decrease following the intake 
of sesame and sesame-canola oils, but tended to increase 
following the intake of canola oil in B1B1 homozygotes. 
Our study was unable to show significantly different 
responses between the genotype groups as well as gene-
dietary oils combined effects in healthy people.

The evidence has shown that CETP activity and the 
risk of coronary diseases were relative to TaqIB variant; 
the B2 allele was associated with moderate inhibition of 
CETP activity, higher HDL-C and apoA-1 levels, lower 
TG levels and consistently a reduced risk of coronary 
diseases than did B1B1 individuals.16,17 It was also found 
that the B2 allele tended to decrease the risk of metabolic 
syndrome.34 Moreover, the prevalence of macrovascular 
complications in diabetes patients such as arteriosclerosis 
obliterans, coronary heart and cerebrovascular diseases 
was significantly higher in individuals homozygous for 
the B1 allele.35 Indeed, B1B1 genotype seems to be a risk 
factor for metabolic disturbances, as we also observed a 
more frequency of B1 homozygotes in patients with type 2 
diabetes than healthy people (18.9% vs. 13.7%), however, 
no significant association between the TaqIB variant and 
baseline trait levels was found.

On the other hand, there is evidence that B1B1 
genotype is associated with a better response to nutritional 
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interventions compared with the B2 allele.36 In a number 
of researches, B1B1 homozygotes of the CETP TaqIB 
polymorphism displayed a better lipid profile in response 
to high carbohydrate/low fat dietary intervention,21 
consuming two green kiwifruit a day alongside a healthy 
diet,37 olive-oil-enriched milk,22 and plant stanol ester 
compared with the B2 allele carriers.38 Similarly, in line 
with a relatively large body of literature, we observed 
that the dietary oil treatments could be more effective 
in carriers of the B1B1 homozygous than those with the 
B2 allele. However, such findings are not necessarily 
consistent between studies and do not reinforce the idea 
that this specific polymorphism can affect metabolic 
responses to interventional therapies.24,25,39

CETP activity can be affected by genetic and 
environmental factors such as dietary intakes, however, 
the possible roles of genetic  variants at the CETP locus 
and mechanisms underlying the effects of these variants 
on the responsiveness to nutritional interventions in the 
modulation of lipid metabolism is not clearly established. 
One possibility is that the combined effects of dietary 
factors and CETP polymorphisms on metabolic responses 
are modulated through their effects on CETP activity. The 
TaqIB mutation is located at the position 277 in the first 
intron of the CETP gene and so it is very unlikely to be 
a functional mutation; however, this SNP is in linkage 
disequilibrium with a mutation in the CETP promoter, 
which is known to have functional effects.40,41 On the other 
hand, it has been proposed that dietary fats can play roles 
in modulating CETP activity, such that in contrast to SFAs, 
the intake of monounsaturated and polyunsaturated fats 
has been associated with decreased activity of CETP.42-45 

There is also insufficient evidence to assess whether 
glycemic responsiveness is affected by variation in the 
CETP gene. Lopez-Rios et al18 reported an increased levels 
of insulin and HOMA in individual homozygotes for the 
B1 allele rather than subjects carrying at least one B2 allele 
that may suggest the effect of the TaqIB polymorphism 
on parameters of insulin resistance. Our findings also 
revealed a modulatory effect of the TaqIB variant on 
insulin, HOMA-IR, and QUICKI in response to dietary 
oil treatments only in diabetes patients.

The strength of our study was in its design as a 
randomized, cross-over study and including a relatively 
large sample size which minimizes the inter-individual 
variations and differences in diet responsiveness. The 
analysis was also conducted in subjects with and without 
diabetes separately, making our findings attributable to 
both populations. Moreover, in our study, the regular 
oils used in households were fully replaced with dietary 
oil treatments which is easier to implement in real life. In 
other words, despite most of the clinical trials, we did not 
use specific amounts of oils, and participants were free to 
consume dietary oils ad libitum. However, it must be noted 
that the studies assessing gene-diet interactions like our 
study face some limitations. Taking into account that the 

metabolic responses to dietary changes are under polygenic 
control and each gene probably contribute to a relatively 
small effect, in such studies which commonly focused 
on single gene effects only, the possibility of statistically 
significant gene-diet interactions is reduced. Moreover, 
most of such researches were not specifically designed 
to assess gene-diet interactions and were retrospective 
analysis of collected data. Indeed, participants were not 
selected based on their genotypes and this approach may 
result in small numbers of individuals in each genotype 
group especially for the rare allele. On the other hand, we 
did not measure CETP activity directly and the effect of 
the TaqIB variant on concentration and activity of CETP 
could not be assessed; therefore it is difficult to discuss 
the mechanisms underlying the modification effects of 
this polymorphism. Another limitation in our study was 
that we could not measure different subclasses of HDL 
particles, since HDL3 subspecies may be a more sensitive 
marker in relation to the effects of CETP activity on HDL 
metabolism.46 

Conclusion
In conclusion, our findings suggest that genetic variation 
at the CETP gene may contribute to the heterogeneity 
in responsiveness of some metabolic traits to dietary oil 
treatments in patients with type 2 diabetes. However, 
no significant modulatory effect of the CETP TaqIB 
polymorphism on metabolic traits in response to plant 
oils was found in healthy people. Taken together, the 
intake of sesame-canola and canola oils showed more 
favorable effects in diabetes patients with B1B1 genotype. 
The evidence of gene-diet interactions is limited and there 
is a need for further precise investigations on the effects 
of polymorphisms in multiple genes simultaneously, and 
not only in single genes to increase our knowledge of 
the mechanisms underlying the modulation of genetic 
variants and dietary factors on metabolic metabolism.
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