Abstract
Introduction: The study aimed to evaluate the diagnostic value of global and regional myocardial deformation parameters derived from two-dimensional speckle-tracking echocardiography to detect functionally significant coronary artery stenosis.
Methods: Dobutamine stress echocardiography and cardiac magnetic resonance myocardial perfusion imaging (CMR-MPI) were performed on 145 patients with a moderate and high probability of coronary artery disease (CAD) and LVEF≥55%. Significant CAD was defined as>50% stenosis of the left main stem,>70% stenosis in a major coronary vessel, or in the presence of intermediate stenosis (50-69%) validated as hemodynamically significant by CMRMPI. Patients were divided in two groups: non-pathological (48.3%) vs pathological (51.7%), according to CAG and CMR-MPI results. Afterwards, off-line speckle-tracking analysis was performed to analyse myocardial deformation parameters.
Results: There were no differences in myocardial deformation parameters at rest between groups, except global longitudinal strain (GLS) and global radial strain (GRS) were significantly lower in the CAD (+) group: -21.3±2.2 vs.-16.3±2.3 (P<0.001) and 39.7±23.2 vs. 24.5±15.8 (P<0.001). GLS and regional longitudinal strain rate (SR) had the highest diagnostic value at high dobutamine dose with AUC of 0.902 and 0.878, respectively. At early recovery, GLS was also found to be the best myocardial deformation parameter with a sensitivity of 78%, specificity 67%, AUC 0.824.
Conclusion: Global and regional myocardial deformation parameters are highly sensitive and specific in detecting functionally significant CAD. The combination of deformation parameters and WMA provides an incremental diagnostic value for patients with a moderate and high probability of CAD, especially the combination with regional longitudinal SR.